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ABSTRACT 
 

This paper deals with the problem of the aeroelastic stability of a typical aerofoil section 

with two degrees of freedom induced by unsteady aerodynamic loads. A method is presented to 

model the unsteady lift and pitching moment acting on a two dimensional typical aerofoil 

section, operating under attached flow conditions in an incompressible flow. Starting from 

suitable generalisations and approximations to aerodynamic indicial functions, the unsteady 

loads due to an arbitrary forcing are represented in a state-space form. From the resulting 

equations of motion, the flutter speed is computed through stability analysis of a linear state-

space system. The sensitivity analysis of the aeroelastic stability boundaries to the structural 

parameter is evaluated. The results show that the parameter with the greatest influence on 

flutter speed is the center of gravity. 
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INTRODUCTION 
 

Flutter is the dynamic aeroelasticity phenol-

menon whereby the inertial forces can modify the 

behavior of a flexible system so that energy is 

extracted from the incoming flow. The flutter or 

critical speed VF represents the neutral stability 

boundary: oscillations are stable at speeds below it, 

but they become divergent above it. 

Theodorsen [1] obtained closed-form solution to 

the problem of an unsteady aerodynamic load on an 

oscillating aerofoil. This approach assumed the 

harmonic oscillations in in-viscid and incompressible 

flow subject to small disturbances. Wagner [2] 

obtained a solution for the so-called indicial lift on a 

thin-aerofoil undergoing a transient step change in 

angle of attack in an incompressible flow. The 

indicial lift response makes a useful starting point 

for the development of a general time domain 

unsteady aerodynamics theory. A practical way to 

tackle the indicial response method is through a 

state-space formulation in the time domain, as 

proposed, for instance by Leishman and Nguyen [3]. 

The main objective of this paper is to 

investigate the aeroelastic stability of a typical 

aerofoil section with two degrees of freedom induced 

by the unsteady aerodynamic loads defined by the 

Leishman’s state-space model. The sensitivity 

analysis is discussed to examine theinfluence of the 

structural parameters of the typical aerofoil section 

on theflutter margin 

 

RESEARCH METHOD 
 

The mechanical model under investigation is a 

two-dimensional typical aerofoil section in a hori-

zontal flow of undisturbed speed V, as shown in 

Figure 1. Its motion is defined by two independent 

degrees of freedom, which are selected to be the 

vertical displacement (plunge), h, and the rotation 

(pitch), α. 

The equations of motion for the typical aerofoil 

section have been derived in many textbooks of 

aeroelasticity, and can be expressed in non-

dimensional form as 
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Figure 1. A Typical Aerofoil Section with Two Degrees 

of Freedom 
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where CM(t) and CL(t)  denote the coefficients of the 
aerodynamic forces corresponding to pitching moment 
and lift, respectively. For a general motion, where an 
aerofoil of chord c = 2b is undergoing a combination 
of pitching and plunging motion in a flow of steady 
velocity V,  Theodorsen[1] obtained the aerodynamic 
coefficients 
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Theodorsen’sfunction is a complex-valued transfer 
function which depends on the reduced frequency k, 
where 
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qs
 represents a quasi-steady aerofoil angle of 

attack, i.e. 
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The indicial response method is the response of 
the aerodynamic flow field to a step change in a set 
of defined boundary conditions such as a step change 
in aerofoil angle of attack, in pitch rate about some 
axis, or in a control surface deflection (such as a tab 
of flap). If the indicial aerodynamic responses can be 
determined, then the unsteady aerodynamic loads 
due to arbitrary changes in angle of attack can be 
obtained through the superposition of indicial 
aerodynamic responses using the Duhamel’s 
integral. 

Assuming two-dimensional incompressible 
potential flow over a thin aerofoil, the circulatory 
terms in Equations (3) and (4) can be written as 
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where s is the non-dimensional time, given by 
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w  is Wagner’s function, which accounts for the 

influence of the shed wake, as does Theodorsen’s 
function. In fact, both Wagner’s and Theodorsen’s 
function represents a Fourier transform pair. 
Wagner’s function is known exactly in terms of 
Bessel functions (see [2] for details), but for practical 
implementation it is useful to represent it 
approximately. One of the most useful expressions is 
an exponential of the form 
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One exponential approximation is given by R.T. 
Jones [4] as 
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The state-space equations describing the 
unsteady aerodynamics of the typical aerofoil section 
with two degrees of freedom can be obtained by 
direct application of Laplace transforms to the 
indicial response as 
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with the output 
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The indicial approach and the state-space 

formulation lead to a dynamic matrix that governs 

the behaviour of the system and enables future 
prediction. The analysis of flutter in this case is 
straightforward and it can be performed in the 
frequency domain, since the eigenvalues of the 

dynamic matrix directly determine the stability of 
the system. If, for a given velocity, any of the 
eigenvalues has a zero real part, the system is 
neutrally stable, i.e., it defines the flutter onset. 

 

RESULTS AND DISCUSSION 
 

In this section, the stability analysis of the 

state-space aeroelastic equation is presented. The 
results have been validated against published and 
experimental results.  The sensitivity analysis is 

discussed to examine the influence of the structural 

parameters of the typical aerofoil section on the 
flutter onset. 
 

Validation against Published Results 
 

Theodorsen and Garrick [5] presented a 
graphical solution of the flutter speed of the two-
dimensional aerofoil for the flexture-torsion case. In 
order to validate the present model, a flutter speed 

computation is performed with varying combinations 
of aeroelastic parameters, as used by Theodorsen 
and Garrick, as shown in Table 1. 

 

Table 1. Aeroelastic Parameters for the Validation 

Case x    a  2

r  

a 0.2 1/3 - 0.4 0.25 
b 0.2 1/4 - 0.2 0.25 

c 0 1/5 - 0.3 0.25 

d 0.1 1/10 - 0.4 0.25 

 
Figure 2. shows the comparison of the flutter 

margin from Theodorsen and Garrick’s work with 
the present computation. In the graph, non-dimen-

sional flutter speed *
F

V is presented as a function of 

the frequency ratio  /
h

. As can be seen, the 

present method provides a good agreement with the 
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published figures only for low frequency ratios. In 

fact, as the ratio approaches unit value, the actual 
curve drifts to generally lower speeds. 

This discrepancy is probably due to numerical 
inaccuracies in the curves presented in the original 
work. Zeiler [6] found a number of erroneous plots in 
the reports of Theodorsen and Garrick and provided 

a few corrected plots. In order to verify the validity of 
Zeiler’s statement, the numerical computation of the 
flutter speed is conducted using the aeroelastic 
parameters used by Zeiler. 

Figure 3 shows some of the results obtained by 
Zeiler, compared to the figures obtained by 
Theodorsen and Garrick and those obtained using 
the present state-space method. As can be observed, 

the agreement with Zeiler is very good, whereas 

Theodorsen and Garrick’s results deviate consi-
derably. It confirms the validity of Zeiler’s statement 
and provides evidence of the validity of the results 

obtained here. 
 

 
Figure 2. Comparison of Flutter Boundaries from Theo-

dorsen and Garrick [5] with Present Computations 

 

 
 
Figure 3. Comparison of the Flutter Boundaries 

from Zeiler [6], and Theodorsen and Garrick [5] with 

the Present Computations. The parameters used are 

 = -0.3,  = 0.05, r2
 = 0.25, b = 0.3 (a) x = 0 (b) x 

= 0.05 (c) x = 0.1 (d) x = 0.2 

Validation Against Experimental Data 

 

Experimental flutter results for a typical 

aerofoil section with two degrees of freedom were 

investigated by Sivakumar [7]. Pitch and plunge are 

provided by a set of eight linear springs. The set-up 

was clamped to the 5 x 4 Donald Campbell wind 

tunnel. The airspeed was gradually increased until 

the onset of flutter. The parameter values used in 

the experimental study are shown in Table 2. 

 
Table 2. Structural Properties of an Aerofoil in the 

Experimental Study 

Parameter xα
   a  rα b

 
ωα ωh 

Value 0.00064 0.0157 -0.1443 0.4730 0.05 61.5637 8.8468 

 

The non-dimensional flutter speed resulting 

from the present computation flutter analysis is 

31.4* 
nom

V  and that from the experimental study 

is 04.4*
exp

V . The comparison shows that the 

value of the experimental flutter speed is therefore 

6.26% smaller than the numerical flutter speed. This 

is may be due to the error and uncertainty that is 

well accepted to occur in experimental studies, and 

which has affected the flutter speed measurement. 

Nevertheless, the flutter speed obtained in the 

experiments agrees with the numerical results fairly 

well. 

 

Parametric Study  

 

The flutter boundaries of a typical aerofoil 

section subjected to unsteady aerodynamic forces are 

affected by a number of structural parameters such 

as the location of the centre of gravity, radius of 

gyration, elastic axis position and ratio of mass. 

Therefore, we need to examine the relationships 

between these parameters and the flutter 

boundaries in order to optimise the design. 

Theodorsen and Garrick [5] perform a theore-

tical survey of the effect of the flutter parameters for 

the flexture-torsion case. The present parametric 

study uses a similar algorithm of the work of 

Theodorsen and Garrick  by varying one parameter 

at a time and keeping all the others constant. The 

reference values which are used in this parametric 

study are a=-0.2, b=0.3, xα=0.1, κ=0.05 and rα2=0.25. 

The flutter speeds are computed over a range of 

flextural-torsion frequency ratios, and plotted as 

dimensionless flutter speed, normalised with respect 

to the uncoupled natural torsional frequency and the 

half chord length. 

From Figure 4a it can be observed as xα 

increases, that the maximum value of the flutter 

speed is reduced and the dip is slightly displaced 

rightwards in the graph. 
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Figure 4b shows the flutter speed increases 

with an increase in the radius of gyration. The dip is 

slightly displaced leftwards as radius of gyration is 

increased. From Figure 4 (c) it can be deduced that 

as κ is increased, the maximum value of the flutter 

speed is significantly reduced. Figure 4 (d) shows 

how the flutter speed versus the frequency ratio 

varies with the elastic axis position, a. By moving the 

elastic axis aft, the flutter speed is decreased and the 

dip displaced leftwards. 

 

CONCLUSIONS 
 

A model to determine the flutter onset of a two-

dimensional typical aerofoil section has been imple-

mented and then validated. A traditional aerody-

namic analysis, based on Theodorsen’s theory and 

Leishman’s state-space model was used. The valida-

tion was performed, firstly, by solving Theodorsen 

and Garrick’s problem for the flexture-torsion flutter 

of a two-dimensional typical aerofoil section. The 

stability curves obtained are in close agreement with 

the results reported by more recent solutions of the 

same problem, whereas the original figures from 

Theodorsen and Garrick are found to be biased, as 

was previously reported by Zeiler. Secondly, 

validation with experimental data was conducted 

and the results showed a fairly close agreement. 

The parametric study of flutter speeds to 

structural parameters was evaluated by changing 

one parameter at a time, while keeping all others 

constant. Knowledge of the functional dependency of 

the flutter speed on each parameter is essential in 

order to obtain sufficient accuracy in determining the 

important parameters and preventing wasting time 

on those with less influence. It is shown here that 

the most important parameter is the location on the 

centre of gravity. 

      
(a)                                                                                                         (b) 

 

     
(c)                                                                                                        (d) 

 
Figure 4. Influence of (a) centre of gravity (b) radius of gyration (c) mass density ratio (d) elastic axis position 
on flutter speed. 
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