Pemodelan Torque Vectoring Sebagai Upaya Untuk Meningkatkan Stabilitas Pengendalian Mobil Listrik

Authors

  • Roche Alimin Design, Mechanical Engineering Department, Petra Christian University
  • Ian Hardianto Siahaan Universitas Kristen Petra
  • Andre Saputra Universitas Kristen Petra

:

https://doi.org/10.9744/jtm.18.2.44-50

Keywords:

dinamika kendaraan, torque vectoring, kendaraan listrik, distribusi torsi, PID

Abstract

Pesatnya perkembangan mobil listrik membuat banyak produsen otomotif berlomba mengembangkan teknologi mobil listrik mereka sendiri. Dari sisi pengaturan performa, mobil listrik lebih banyak menyediakan fleksibilitas daripada mobil konvensional, sehingga implementasi kontrol yang lebih mutakir menjadi lebih memungkinkan. Saat ini salah satu sistem kontrol yang tersedia dan dikembangkan pada mobil listrik adalah Torque Vectoring. Pada penelitian ini dilakukan pengembangan algoritma sistem Torque Vectoring beserta sistem kontrolnya melalui pemodelan dan simulasi MATLAB-Simulink. Metode kontrol yang digunakan adalah kontroler PID. Variabel yang diukur untuk melihat keefektivitas sistem Torque Vectoring adalah yaw rate, sudut kemudi, sudut sideslip, traksi pada setiap ban, percepatan longitudinal dan lateral, kecepatan longitudinal, slip longitudinal di setiap ban, dan torsi output di setiap roda. Dari penelitian ini dapat disimpulkan bahwa algoritma sistem Torque Vectoring yang dikembangkan mampu meningkatkan stabilitas pengendalian mobil listrik. Sistem Torque Vectoring tersebut mampu beroperasi pada berbagai kondisi jalan dan manuver mobil, sehingga mobil dengan sistem Torque Vectoring lebih dapat dikendalikan dan stabil jika dibandingkan dengan mobil tanpa sistem Torque Vectoring.

References

IEA, Global EV outlook, 2019, Scaling-up Transation to Electric Mobility, http://iea.org. [Accessed on September 9th 2019]

Wong, A., Kasinathan, D., Khajepour, A., Chen, S.K., Litkouhi, B., 2016, “Integrated Torque Vectoring and Power Management Framework for Electric Vehicles”, Control Engineering Practice, 48, pp. 22–36.

Fricano, A., 2019, “Design of Torque Vectoring System for Formula SAE Electric Vehicle”, Mas¬ter’s Thesis, Mechanical Engineering Department, Politecnico di Torino, Italia.

Stoop, A., 2014, “Design and Implementation of Torque Vectoring for the Forze Racing Car: In Collaboration with the Forze Hydrogen Racing Team”, Master’s Thesis, Mechanical Engineering Department, Delft University of Technology, Belanda.

Ghezzi, M. K., 2017, “Control of a Four In-Wheel Motor Drive Electric Vehicle”, Master’s Thesis, Industrial Engineering Department, Polytech¬nic University of Catalonia, Spanyol.

Crolla, D. A., Cao, D., 2012, “The Impact of Hybrid and Electric Powertrains on Vehicle Dynamics, Control Systems and Energy Regeneration”, Vehicle System Dynamics, 50(sup1), 95–109. https://doi.org/10.1080/00423114.2012.676651

Goggia, T., Sorniotti, A., De Novellis, L., Ferrara, A., Gruber, P., Theunissen, J., Steenbeke, D., Knauder, B., & Zehetner, J., 2015, “Integral Sliding Mode for The Torque-Vectoring Control of Fully Electric Vehicles: Theoretical Design and Experimental Assessment”, IEEE Transactions on Vehicular Technology, 64(5), pp. 1701–1715.

Jalali, K., Uchida, T., Lambert, S., McPhee, J., 2013, “Development of an Advanced Torque Vectoring Control System for an Electric Vehicle with In-Wheel Motors using Soft Computing Techniques”, SAE International Journal of Alternative Powertrains, 2(2), pp. 2013-01–0698.

Kaiser, G., Holzmann, F., Chretien, B., Korte, M., Werner, H., 2011, “Torque Vectoring with a Feedback and Feed Forward Controller - Applied to a Through The Road Hybrid Electric Vehicle”, IEEE Intelligent Vehicles Symposium (IV), IV, pp. 448–453.

Ren, B., Chen, H., Zhao, H., & Yuan, L., 2015, “MPC-Based Yaw Stability Control in In-Wheel-Motored EV via Active Front Steering and Motor Torque Distribution”, Mechatronics, 38, pp. 103–114.

Antunes, J., Antunes, A., Outeiro, P., Cardeira, C., & Oliveira, P., 2019, “Testing of a Torque Vectoring Controller for a Formula Student Prototype”, Robotics and Autonomous Systems, 113, pp. 56–62.

Ding, S., Liu, L., & Zheng, W. X., 2017, “Sliding Mode Direct Yaw-Moment Control Design for In-Wheel Electric Vehicles”, IEEE Transactions on Industrial Electronics, 64(8), pp. 6752–6762.

Crolla, D. A., & Cao, D., 2012, “The Impact Of Hybrid and Electric Powertrains on Vehicle Dynamics, Control Systems and Energy Regeneration”, Vehicle System Dynamics, 50(1), pp. 95–109.

Goggia, T., Sorniotti, A., De Novellis, L., Ferrara, A., Gruber, P., Theunissen, J., Steenbeke, D., Knauder, B., Zehetner, J., 2015, “Integral Sliding Mode for The Torque-Vectoring Control of Fully Electric Vehicles: Theoretical Design and Experimental Assessment”, IEEE Transactions on Vehicular Technology, 64(5), pp. 1701–1715.

Peng, Y., Yang, X., 2012, “Comparison of Various Double-Lane Change Manoeuvre Specifications”, Vehicle System Dynamics, 50(7), pp. 1157–1171.

Setiawan, J. D., Safarudin, M., Singh, A., 2009, “Modeling, Simulation and Validation of 14 DOF Full Vehicle Model”, International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering, IEEE, Bandung, Indonesia.

Downloads

Published

2021-10-27